Ferromagnetic germanide in Ge nanowire transistors for spintronics application.
نویسندگان
چکیده
To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.
منابع مشابه
Ferromagnetism of Mn/Ge Multilayers Grown by Molecular Beam Epitaxy
We report on novel ferromagnetic Mn/Ge multilayers for spintronics applications investigated both experimentally and theoretically. Two Mn/Ge multilayers are grown on GaAs (001) substrates by molecular beam epitaxy. The period of each multilayer consists of an Mn layer of varying thickness (0.6 and 5 Å) and a 10 Å thick Ge spacer layer. From temperaturedependent magnetization and hysteresis loo...
متن کاملFirst-Principles Study of Magnetic Properties of 3dTransition Metals Doped in ZnO Nanowires
The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic...
متن کاملPerformance analysis of a Ge/Si core/shell nanowire field-effect transistor.
We ana/lyze the performance of a recently reported Ge/Si core/shell nanowire transistor using a semiclassical, ballistic transport model and an sp3d5s* tight-binding treatment of the electronic structure. Comparison of the measured performance of the device with the effects of series resistance removed to the simulated result assuming ballistic transport shows that the experimental device opera...
متن کاملFormation and Thermal Stability of Nickel Germanide on Germanium Substrate
The formation and thermal stability of nickel germanide on germanium substrate were examined by both electrical and physical characterization methods. Low resistivity (14 m cm) mono-nickel–germanide was formed at a low temperature of 400 C on Ge substrate. The sheet resistance of nickel germanide changed with the germanide formation temperatures and had a similar characteristic as nickel silici...
متن کاملEnhanced morphological and thermal stabilities of nickel germanide with an ultrathin tantalum layer studied by ex situ and in situ transmission electron microscopy.
The formation and morphological evolution of germanides formed in a ternary Ni/Ta-interlayer/Ge system were examined by ex situ and in situ annealing experiments. The Ni germanide film formed in the Ni/Ta-interlayer/Ge system maintained continuity up to 550°C, whereas agglomeration of the Ni germanide occurred in the Ni/Ge system without Ta-interlayer. Through microstructural and chemical analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012